Spectral collocation solutions to multiparameter Mathieu's system

نویسندگان

  • Calin-Ioan Gheorghiu
  • Michiel E. Hochstenbach
  • Bor Plestenjak
  • Joost Rommes
چکیده

Our main aim is the accurate computation of a large number of specified eigenvalues and eigenvectors of Mathieu’s system as a multiparameter eigenvalue problem (MEP). The reduced wave equation, for small deflections, is solved directly without approximations introduced by the classical Mathieu functions. We show how for moderate values of the cut-off collocation parameter the QR algorithm and the Arnoldi method may be applied successfully, while for larger values the Jacobi–Davidson method is the method of choice with respect to convergence, accuracy and memory usage.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chebyshev Spectral Collocation Method for Computing Numerical Solution of Telegraph Equation

In this paper, the Chebyshev spectral collocation method(CSCM) for one-dimensional linear hyperbolic telegraph equation is presented. Chebyshev spectral collocation method have become very useful in providing highly accurate solutions to partial differential equations. A straightforward implementation of these methods involves the use of spectral differentiation matrices. Firstly, we transform ...

متن کامل

Multiple solutions of a nonlinear reactive transport model using least square pseudo-spectral collocation method

The recognition and the calculation of all branches of solutions of the nonlinear boundary value problems is difficult obviously. The complexity of this issue goes back to the being nonlinearity of the problem. Regarding this matter, this paper considers steady state reactive transport model which does not have exact closed-form solution and discovers existence of dual or triple solutions in so...

متن کامل

Spectral collocation for multiparameter eigenvalue problems arising from separable boundary value problems

In numerous science and engineering applications a partial differential equation has to be solved on some fairly regular domain that allows the use of the method of separation of variables. In several orthogonal coordinate systems separation of variables applied to the Helmholtz, Laplace, or Schrödinger equation leads to a multiparameter eigenvalue problem (MEP); important cases include Mathieu...

متن کامل

Analysis of Heat transfer in Porous Fin with Temperature-dependent Thermal Conductivity and Internal Heat Generation using Chebychev Spectral Collocation Method

In this work, analysis of heat transfer in porous fin with temperature-dependent thermal conductivity and internal heat generation is carried out using Chebychev spectral collocation method. The numerical solutions are used to investigate the influence of various parameters on the thermal performance of the porous fin. The results show that increase in convective parameter, porosity parameter, ...

متن کامل

Analysis of Flow of Nanofluid through a Porous Channel with Expanding or Contracting Walls using Chebychev Spectral Collocation Method

In this work, we applied Chebychev spectral collocation method to analyze the unsteady two-dimensional flow of nanofluid in a porous channel through expanding or contracting walls with large injection or suction. The solutions are used to study the effects of various parameters on the flow of the nanofluid in the porous channel. From the analysis, It was established that increase in expansion r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied Mathematics and Computation

دوره 218  شماره 

صفحات  -

تاریخ انتشار 2012